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SHORT COMMUNICATION 
SINGULARITY CANCELLATION IN BOUNDARY INTEGRAL 

EQUATIONS FOR AXISYMMETRIC STOKES FLOW 
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School of Chemical Engineering, Purdue University, W. Lufayette, IN 47907, U.S.A. 

INTRODUCTION 

The boundary element method (BEM) provides a scheme for solving boundary integral equations 
numerically by dividing the boundary into elements and approximating the unknown variables 
over these elements by means of shape functions. In recent years this method has developed into a 
powerful tool for solving engineering problems. One difficulty that arises in solving problems by 
the boundary element method is the computation of integrals that exist only in the sense of the 
Cauchy principal value. Singular kernels appear in integrals that are on or near the diagonal of 
the matrices that result from the discretization of the boundary, and the solution is very sensitive 
to the accurate calculation of these integrals. For axisymmetric creeping flow problems (i.e., at 
zero Reynolds numbers’s2) the singularities are of order l/r and logr. Integration through the 
logarithmic singularity is easily performed by logarithmic Gauss quadrature. 

In Cartesian co-ordinates the calculation of the l/r-singular integrals has been overcome by the 
use of the rigid body motion m e t h ~ d . ~  However, in axisymmetric creeping flow, rigid body 
motion cannot be imposed in the radial direction. Other modes of motion, analogous to rigid 
body motion, have been suggested by Sarihan and Mukherjee? Bakr’ and Rizzo and Shippy.6 
For certain problems the principal value of singular integral can even be evaluated analytically.’ 
However, because of the complexity of the kernel functions (combinations of elliptic integrals of 
the first and second kinds), general analytical integration cannot be performed. Recently, 
Guiggiani and Cassilini’ reported the direct calculation of Cauchy principal value integrals using 
standard and logarithmic Gauss quadrature. Telles’ used a mapping technique to eliminate the 
singularity. We will show here that these singularities cancel out directly in axisymmetric BEM by 
means of algebraic simplification for arbitrary elements and mappings. It is more practical to 
cancel out the l/r-singularities and obtain non-singular expressions rather than to calculate them 
individually using other techniques. We begin by presenting the boundary integral equations that 
describe creeping flow of an incompressible Newtonian fluid. Then we show how these equations 
‘simplify’ for axisymmetric flow. Finally we show how the singularities cancel for any order 
elements. 

BOUNDARY INTEGRAL EQUATION 

Creeping flow of an incompressible Newtonian fluid past a particle with an arbitrary surface r is 
described by 

pv2 u = v P, v * u = o ,  (1 )  
u,P-+O as I Iy I l - ,~ ,  u = Uparticle on r, (2) 
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where u is the fluid velocity vector, P is the pressure, p is the viscosity and y is the position vector. 
The fundamental singular solution of the system (equations (1) and (2)) for a point force at point p 
in an unbounded fluid is1*2*10,11 

where r is the distance between points p and q in the fluid, n, is the kth component of the unit 
vector normal to the surface and aij is the Kronecker delta. Physically, u i j ( p ,  q )  is the velocity 
component in the ith direction at point q resulting from a unit force in thejth direction at point p .  
The function t i j ( p ,  q) describes the traction field associated with uij(p,  q). That is, t i j ( p ,  q) is the ith 
component of the traction at point p resulting from a unit force in thejth direction at point q. 
Note that the fundamental solution is singular when p and q coincide. 

For axisymmetric flows the fundamental solution is derived from the general three-dimensional 
solution by expressing the latter in a cylindrical co-ordinate system. Then the fundamental 
solution in cylindrical co-ordinates is integrated in the &direction around the axis of rotational 
symmetry. The boundary integral equation becomes 

cij(P)u.( 1- t j (q)ui j (P ,  4)rqdY- u j ( q ) t i j ( ~ ,  q) rqd~ ,  ( 5 )  
J -s, J: 

where y is the contour of the radial section of r. The coefficients c i j ( p )  depend only on the local 
geometry of the bounding surface at point p .  For a smooth surface c i j ( p )  is equal to 3 d i j .  The 
point p(r,, z p )  is fixed and 4(rq, zq)  denotes a boundary point moving along the integration path. 

SINGULARITY CANCELLATION 

We now present a procedure by which the first-order singularities in the integrals 

uj(q) t i j (P,  q)rqdY 

are removed. These integrals arise from the second term on the right-hand side of equation (5).  
The Green functions are then obtained as functions of a, b, 5 and ?, where 

a = rf +r,Z +Z2, b = 2rprq, (7) 

z = zq - z p ,  r = r  9 -rp. (8) 
- - 

The Green functions are complicated and are not presented here.” The expression for tij becomes 
singular when q approaches p ,  because a - b approaches zero. From equations (7) and (8) we have 

where r is the distance between p and q. Notice that the singularity can be cancelled out by a 
factor of the form ZiY2- i  for i = 0, 1,2. 

In order to simplify the analytical expression for tij, it is convenient to isolate the leading 
singular term of the tij-expressions and treat it separately from the non-singular parts. This can be 
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done by expressing a and b in terms of F and Z and rearranging the tij  to separate out the.non- 
singular parts where the l/(a-b)-term has been cancelled by factors of the form Z i f 2 - ’  with 
i = 0, 1,2. This gives 

t . .  = t! . + t!’. 

where tYj is the non-singular part (given in the Appendix) and tij  is the part where l/(a - b) has not 
been cancelled. The t i j  are given by 

(10) V IJ V’ 

t i j =  BAijSij(n,ffjj2)+ n,Zflf)), (1  1) 
where 

n, and n, are the components of the outwardly directed unit vector normal to the contour y and E 
is an elliptic integral of the second kind. The expressions for A,, S i j , f i ; )  andflf) are given in 
Table I. The components of the unit normal are given by 

(13) 
1 d? 

‘ IJI dx IJI dx’ = IJI dx I J (  dx’ 

where J is the Jacobian of transformation from global co-ordinates to local element co-ordinates 
x. Substituting equation (13) into equation ( l l ) ,  we obtain 

--- - 
1 dr n =--A- 1 dz 1 dz n =-A=-- 

These expressions are general and apply for any order of element and mapping. Note that I J I will 
be cancelled after the discretization of the radial contour element dy to local element co-ordinates. 

Table I .  Definitions of terms appearing in the expressions for the tractions after discretization 

rr zr rz z z  oe 

1 1 

rprq rP 
Aij - (rp + rq)2(r;  + r : )  - ( r p + r q )  1 

a+b 

i2 
(a - b)’ 
- Sij 

- - 
rz rz 5’ 1 

(0 - b)2 (a - b)’ (a - b)’ a-b 
~ 
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These results (equations (14) and (15)) are independent of the type of element to be used in the 
discretization. 

We now prove that the singularity cancels out for any element of any order. For a higher-order 
element the only terms that change in equation (15) are the expressions fdZ/dx and Zdi/dx. In 
general, for rP equal to r j ,  

N 

i = l  
f =  4iri-rj=rl 41 + .  . . + ( 4 j - l ) r j + .  . + r N 4 N ,  (17) 

where bi are the basis functions of the element and ri are the r-co-ordinates of the nodes of the 
element. Also, because c,”= bj = 1, we have 

N 

All the shape functions 41 for i # j  contain the (x - xi)-term, where xi is the location of p ,  because 
they are equal to zero when x = xi.  Therefore we can express 4i for i not equal t o j  as the common 
factor x -xi  times a remainder $i: 

c#Ji = I j i (X -xi). (19) 

Substituting into equation (18), we obtain 

(20) 
d i  
dx i = Y,(x -x i ) ,  - = Y, + (x - Xj)Yi, 

N 
where Y, = +i(ri - ri) and Y ;  = dY,/dx. Similarly, we obtain 

i =  l , i #  j 

dZ 
dx Z=Yz(x-xj), -- - Y z  +(x -xj)Y;, 

N 
where Y z  = 1 Iji(zi - z j ) .  From equations (20) and (21) we obtain 

i =  l , i #  j 

(22) 

(23) 

- d i  
dx 

- dZ 
dx 

2- = (x-xj) YzYr  + (x - Xj)2 Y,Yy:, 

I- = (x-xj) YzYr + (x - X j ) 2  Yr  Y;. 

Bij = (1 +x)Y,Y‘,(fifi-f~) + (1 + x)2 (Y,Y:f:j) - Yz YifS)). 

The Bij-terms from equation (15) become 

(24) 

The difference f i f )  -f‘,f) always has a common factor of ? 

1:;) -fi;) = FAij. (25) 
Expressions for A, are given in Table I; the Aij are not singular. The common factor f in  equation 
(25) gives the additional factor required to cancel the singularity. Thus the Bij would give the 
required r z  factor that would cancel the l/(a-b)-singularity in Sij. 

We have proven that the l/r-singularities always cancel out for any order of element. The final 
non-singular expression for any order of element can be written as 

(26) tij = a Aij N S ,  C,, 
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and the NSij-expressions are given in Table I. These are non-singular expressions and can be 
integrated with ease by standard Gauss quadrature. 

We have assumed that the mapping is linear. Linear mappings are used predominantly in 
practice, but higher-order mappings can also be used for curved boundaries. The derivations 
presented in this communication are the same even for higher-order mappings. The only 
differences are in the expressions for Yr and Yz. 

In this communication we have examined the singularities in the boundary element method for 
axisymmetric creeping flow. We have shown that the l/r-singularity in the integrals involving t i j  
can be cancelled. The resulting expressions are non-singular and nothing more than standard 
Gauss quadrature is necessary for their integration. 
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1 1 
f 2 = -  -- z3yZ-- -+rp Zyz--(r,+rq)Zyri , :: [ 2ip - 2 (': rP ) rp 
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